Learning Mobile Manipulation through Deep Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Composable Deep Reinforcement Learning for Robotic Manipulation
Model-free deep reinforcement learning has been shown to exhibit good performance in domains ranging from video games to simulated robotic manipulation and locomotion. However, model-free methods are known to perform poorly when the interaction time with the environment is limited, as is the case for most real-world robotic tasks. In this paper, we study how maximum entropy policies trained usi...
متن کاملDeep Reinforcement Learning for Robotic Manipulation
Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered ...
متن کاملSimulated Transfer Learning Through Deep Reinforcement Learning
This paper encapsulates the use reinforcement learning on raw images provided by a simulation to produce a partially trained network. Before training is continued, this partially trained network is fed different raw images that are more tightly coupled with a richer representation of the non-simulated environment. The use of transfer learning allows for the model to adjust to this richer repres...
متن کاملLearning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
Dexterous multi-fingered hands are extremely versatile and provide a generic way to perform multiple tasks in human-centric environments. However, effectively controlling them remains challenging due to their high dimensionality and large number of potential contacts. Deep reinforcement learning (DRL) provides a model-agnostic approach to control complex dynamical systems, but has not been show...
متن کاملTowards Cognitive Exploration through Deep Reinforcement Learning for Mobile Robots
Exploration in an unknown environment is the core functionality for mobile robots. Learning-based exploration methods, including convolutional neural networks, provide excellent strategies without human-designed logic for the feature extraction [1]. But the conventional supervised learning algorithms cost lots of efforts on the labeling work of datasets inevitably. Scenes not included in the tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20030939